Test Strips:

Tips, Techniques, Taboos

V. Taaffe – 2008
Regarding the “Smiley” Graphic

“Humor is also a way of saying something serious.”

T. S. Eliot
British (US-born) critic, dramatist & poet (1888 - 1965)

“It is our responsibilities, not ourselves, that we should take seriously.”

Peter Ustinov
English actor & author (1921 - 2004)
Definition of Test Strip
(typically used in dialysis)

- Small plastic strip with a pad or pads attached that has been impregnated with an appropriate amount of reagent(s) for measuring a specific substance in a fluid.

- May also be made from a reagent impregnated paper (with no pads attached).
Typical Test Strip Construction
(penny added for size reference)

- Block style reagent pad
- Flow-through (aperture) style reagent pad
Typical Test Strip Packaging

- **Plastic containers**
 - Screw cap or flip-top cap bottles (50 or 100 strips)
 - Individual bottles or kits of multiple bottles
 - Flat packs with pull off-push on rectangular cap

- **Metal tubes**
 - Push off/on cap (can be used with CapKeeper®)

- **Individual foil wrapped**
 - Foil wrapped strips ship in poly bags
Typical Test Strip Packaging

- Flip-top bottle
- Flat pack
- Screw-cap bottle
- Metal tube: Push off/on cap
- Individual foil wrapped
History of Test Strips

• More than 45 years of use in medical industry
 – Including more than 20 years use in dialysis

• Miles Labs (Bayer) introduced Clinistix® in late 1950’s
 – First dip and read test (measured glucose in urine)
 – Followed by test strips for urine, blood, chemical analysis

• Widespread use today in many medical and non-medical applications
Why Do We Use Test Strips?

- Ease of use
- Speed
- Accurate
- Inexpensive
- No messy clean up, no glass, waste, or MSDS concerns
How Do Test Strips Work?

- In a typical assay (test analysis), you dip the reagent pad area into a solution to be tested for a specified time period, remove the strip, and compare the color of the reagent area with a color chart.

- Some test strips work by presence/absence of a color change at a threshold concentration, or by measuring a color change with a meter.
How Do Test Strips Work? (continued)

Compare reacted pad to color chart on bottle (or separate card)
How Do Test Strips Work?
(continued)

• 10 million (estimated) distinguishable colors
 – Three components: lightness, hue, saturation.
 – “Color difference unit”: quantitative measurement.

• Test strip manufacturers
 – Strive to create greatest possible color difference, relative to concentration, in terms of color difference units.
 – Use color measurement tools for best color match
 – Check test strip colors in different light conditions.
Types of Test Strips Typically Used in Dialysis

- Free/Total Chlorine
- Chlorine Potency
- Total Hardness
- Ozone (in water)
- pH
- Peroxide/Peracetic Acid Residual
- Peracetic Acid Potency
- Blood Leak
- Glucose (PD Catheter leaks)
- Formaldehyde & Glutaraldehyde
Typical Test Strip Testing Locations in a Dialysis Center

Water Treatment System

- Water Softener
- Carbon Tank #1
- Carbon Tank #2
- RO System
- Holding Tank

Dialysis Stations

- Dialysis Machine
- Blood Leak
- pH
- Disinfectant Potency/Residual

- pH
- To Stations

Dialyzer Reprocessing Area

- Dialyzers
- Disinfectant Potency

Tip!
Interferences

- Substances, other than label indicated test substance, that may potentially affect test result.
 - All reagent tests (tablets, powder, strips, etc.) have interferences.

- Different test types, used to test for same substance, may have different interferences, *e.g.*:
 - Manganese interferes with DPD kits, not with MTK/TMK/TMB strips.

- Non-factor at times, *e.g.*:
 - Post RO water tests.
 - Insufficient interfering substances in AAMI quality water or saline.
Accuracy and Precision

- Manufactured using standard reference procedures
 - Tested against most accurate industry standards available
 e.g. Total chlorine test strip vs. amperometric titration test per Standard Method of Wallace and Tiernan

- Lot-by-lot blind studies conducted by manufacturers
 - To verify accuracy and precision (repeatability)

- Fewer end user procedural steps compared to liquid, tablet, and powder test kits (and electronic devices).
 - Reduces chance for procedural error
Are There Steps the End User Should Take to Ensure Test Strip Accuracy?

Yes!

Important techniques/methods are described on the following slides.
All personnel who will be in a position to use test strips should first pass a color blindness test.

- Color blindness tests available on internet (or from RPC).
- Document test results and place in personnel file.
- Answers: Top row (L to R): 25, 29, 45,
 Bottom row (L to R): 56, 6, 8
Adhere to Instructions for Use (IFUs)

Important test strip procedures

- Test strip handling
- Test sample preparation
- Immersion (exposure) time and wetted test strip wait time
- Dip, swish, or flow-over procedure
Adhere to Instructions for Use (continued)

Key test strip action items
- Make use of color interpolation
- Know test substance safe limit/range
- Understand “zero” color
- Comply with storage and shelf life
- Comply with test strip quality control
- Send vendor suspected failed strips (analysis)
Test Strip Handling

- Keep all unused strips in original container.
- Do not remove desiccant dryer from container.
- Dry hands before reaching into container.
- Replace cap immediately and tightly after removing a test strip.
- Do not touch the indicator (reagent) pad.
- Do not allow test strips to come into contact with non-test liquids or any vapors.
Test Sample Preparation

☑ Properly prepare test sample for each specific substance to be tested.

Example:

- Prior to testing water:
 - Allow RO to process water for at least 15 minutes
 - Rinse sample cup (if test calls for use of cup) three times with water to be tested.
 - Chlorine/chloramines test: Complete test immediately after preparing sample (chlorine/chloramines are volatile).
Immersion (Exposure) Time and Wetted Test Strip Wait Time

- To measure test strip times always use:
 - Stopwatch, or
 - Seconds counter of a digital watch, or
 - Second hand of a nearby clock

- Fold aperture style strips during wetted wait time
Sample Cup “Swish” Procedure

CORRECT
Pad perpendicular to direction of movement

INCORRECT
Pad parallel to direction of movement
Color Interpolation

Definition of interpolation (mathematical):

“To estimate a value of (a function or series) between two known values.”
Know Safe Limit or Range for Substance Under Test

Examples:

- Chloramines in water test (*total chlorine test strips*)
 - 0.1 ppm maximum per AAMI RD62

- Dialysate pH (*pH test strips*)
 - 6.9 to 7.6 per AAMI RD52

- Peracetic acid residual (*peroxide/PAA residual test strips*)
 - Less than 3 ppm per PAA manufacturer’s IFU
“Zero” Color

- Reacted reagent pad matching color chart “zero” color indicates substance under test is below sensitivity of test strip and cannot be detected.
 - Does not mean substance level is actually zero.
 - Does mean substance is at level less than lowest color chart value.

- For some strip types, dry reagent pads direct from container, may not match chart zero color (little lighter/darker). Considered normal.
 - After reacted in fluid, free of the test substance, pad color changes to match zero on color chart.
Storage

- Low humidity environment (< 50% RH) is optimal.
- Standard room temperature 70-75° F is optimal. Range 59°-86° F
- Cap sealed tightly.
- Desiccant dryer should always be in container.
Shelf Life

- Typically 2 to 3 years after date of manufacture.
- Some strip types have reduced shelf life upon opening container.
 - Indicated in Instructions for Use (if applicable).
- Expiration date (and lot no.) printed on container.
- Do not use beyond expiration date.
Test Strip Quality Control Methods

• QC Controls
 - IFUs frequently call for field verification of test strips using QC control supplies.
 - Documentation of test strip field QC is required by CMS.

• QC Control Field Verification Program, e.g. Certi-Chek®
 - Program from vendor that performs field QC verification for you.
 - Download test results for any lot # from vendor’s Web site.
 - Program accepted / endorsed by strip manufacturers.
 - Downloaded results from vendor Web site accepted by CMS.
 - Independent verification helps protect against test strip recalls.
Do Not Expect Tap Water Chlorine Tests To Be Consistent or Uniform

- Levels of combined chlorine, from tap water faucets, in same building, can vary (affected by piping type, etc.).
- EPA range is 0.2 ppm (minimum) to 4.0 ppm (maximum).
Do Not Use Qualitative Test for Tests Requiring Low End Precision

☑️ Qualitative & quantitative (semi) procedures may both be listed in test strip IFUs.

- At lowest measurement value, precision of qualitative test may be affected by speed of sample flow (flow rate).

- Precision is defined as repeatability, or ability to repeat the test with consistent results.
Definitions

- **Qualitative** analysis determines the constituents of a substance without regard to the quantity of each ingredient. [1913 Webster]

- **Quantitative** analysis determines the amount or quantity of each ingredient of a substance. [1913 Webster]

- **Analysis** is the separation of a compound substance, by chemical processes, into its constituents, with a view to ascertain either (a) what elements it contains, or (b) how much of each element is present. The former is called **qualitative**, and the latter **quantitative** analysis. [1913 Webster]
Do Not Use Qualitative Test for Tests Requiring Low End Precision

Example:
- Total Chlorine *Sensitive* Test Strips typically list both qualitative and quantitative (semi) procedures.
- Use qualitative procedure for rinse residuals, e.g. water distribution loop, jugs, dialysis machines (0.5 ppm).
- Use quantitative (semi) for sensitive tests requiring precision at lowest value, e.g. chloramines (0.1 ppm).
Do Not Compare Test Strip Results To Less Accurate Test Methods

- Always compare test strip results to a standard reference test or QC standard solutions for the substance under test.

Example:
- Chlorine test strip results *should not be* compared with DPD test methods.
- Chlorine test strip results *should be* compared against a chlorine standard reference test (e.g. Amperometric Titration)
Do Not Use Test Strips That Show Discoloration Direct from Container

• Reagent (test) pad direct from container (dry):
 - Should match color chart zero color...a little lighter or darker color is acceptable.
 - Color should be uniform (not “spotty”).
 - If irregular brown/black, or spotted, do not use. Typically means strips were exposed to excessive moisture and/or heat. Return strips to vendor.

Taboo!
Summary

Test Strips

- Widespread use in medical industry.
- Fast, convenient, accurate when used properly.
- Must adhere to specific IFU for each test strip type to ensure accuracy and repeatability.
- Avoid traps ("Taboos") that can cause problems.
Has This Session Met Its Objectives?

Objectives

☑ To describe the various test strips used in dialysis, how they work, and why we use them.

☑ To examine the methods and requirements for proper use of test strips in dialysis.

☑ To identify warnings and cautions associated with the use of test strips.
Has it Met Your Expectations for an Educational Session on Test Strips?

- AAMI RDD Committee is working on a Technical Information Report (TIR) on tests used in dialysis. It will include information on test strips.

- This presentation, and further educational information on test strips, can be found in the “Technical Support Information” section of the RPC Web site at:

 www.rpc-rabrenco.com